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Tubing Rigidity
Its Relation to Size Is

Dramatic - But Often

Misunderstood

Many mechanical effects follow equations
that contain power functions - something in
the equation will vary with the square or
cube, for instance, of something else.
These variations are often dramatic, so
people quote them a lot. Unfortunately,
though, the quotes are often taken out of
context.

A prime example is the effect of diameter
on frame tubing. Some people will say that a
tube's rigidity is proportional to the
square of its diameter; some will say to
the cube; and some will say to the fourth
power (and, of course, some people will
shun the dramatic exponents and say it's a
simple direct proportion). To design any new
kind of frame in a rational way, you need to
know: which is it?

Some people also will quote the same rela-
tionships not for a tube's rigidity, but for its
strength. Are strength and rigidity the same
thing?

As it happens, most of these assertions
can be correct (or approximately so), de-
pending on the assumptions you make.
Strength and rigidity are different
properties though and they often vary in
different ways.1 I'll start with examples in
which some of the proportions quoted above
are correct, and then I'll go into more detail
about why rigidity and strength work as they
do. Finally I'll discuss a few of the
implications for frame design.

Bending and Twisting

The first step of the description is to spec-
ify the kind of strength or rigidity in ques-
tion. There are four common types, corre-
sponding to the four common ways of apply-
ing a load: axial, flexural, torsional, and
shear. Axial loading is lengthwise tension
or compression; flexural is bending;
torsional is twisting; and shear loading
tends to move portions of the object
crosswise past one another, similar to a
stack of cards pushed sideways.

For bicycle frames the important types of
rigidity are flexural and torsional.2
Strength is rarely a problem in normal use
but could be of greater concern in modified
designs;

again the important types would probably be
flexural and torsional. ( Strength does affect
a frame's ability to survive an accident, of
course, and the loading to be withstood in
accidents seems to be mostly of a bending
type.)

The following examples, then, are for flex-
ural and torsional loading. (Conveniently, the
rigidities against these two types of loading
always change by equal ratios for tubing; and
the strengths also change by equal ratios,
but not by the same ones used for the
rigidities. For example, if a change in tube
design increases the flexural rigidity by 10
percent, the torsional rigidity also increases
by 10 percent.) The hidden variable that lets
all the different exponents be correct is, of
course, the tubing wall thickness. Here are
four possible permutations:

A. If both the diameter and wall thickness
are multiplied by some number - call it k -
then the rigidity increases by a factor of k
4 and the strength by a factor of k3. (Mean-
while the weight for a given length increases
by a factor of k2.)

B. If the diameter is multiplied by k but the
wall thickness is not changed, the rigidity in-
creases by a factor of approximately3 k3 and
the strength by a factor of approximately k2.
(Weight increases by a factor of approxi-
mately k.)

C. If the diameter is multiplied by k but the
wall thickness is divided by k (so that the
weight remains approximately the same) the
rigidity increases by a factor of approxi-
mately k2 and the strength by a factor of ap-
proximately k.

A fourth example is worth mentioning,
even though (or because) it doesn't involve a
diameter change:

D. If the diameter stays constant and the
wall thickness is multiplied by k, the flexural
and torsional rigidities increase by approxi-
mately the simple factor of k, and so does
the strength (and the weight). For any frame
design that uses standard lugs and fittings,
of course, this is the only change available.

Deducing from these examples, an ap-
proximate rule of thumb would appear to be
that rigidity depends on the product of the
wall thickness and the cube of the diameter;
and strength depends on the product of wall
thickness and square of diameter.

As we'll see, this rule is a useful
approximation, reasonably accurate for
thin-walled tubing, but it leaves the reasons
(and the exact magnitudes of change) a
mystery. Also, common sense dictates that
examples B and C must encounter some
sort of limit.

The reasons do take some careful thought,
but they aren't very complex (and they
equip you to find the limits and the exact val-
ues). I'll discuss rigidity first, and then add
one more consideration that will explain
strength.
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Moment of Inertia
The rigidity of an object can be mathemati-

cally defined as the ratio between the load
applied (of some specific type) and the
amount of deformation that results.4 This ra-
tio depends on three things:

• The stiffness (i.e., modulus of elasticity)
of the material itself;

• The amount of material present to resist
the deforming load; and

• The shape in which the material is ar-
ranged, which determines its mechanical ad-
vantage against the load applied.

The modulus of elasticity will depend only
on the material itself. The effect of the other
two factors - amount of material, and shape - is
customarily expressed as a single term called
the "moment of inertia" (not to be confused
with bending or twisting moments; related to
them only through its mathematical
ancestry). In the foregoing examples, since
they all assume the same kind of material, all
the changes in rigidity depend on changes in
this term.5 Strain Patterns

The moment of inertia is calculated by
considering the cross section of an object as the
sum of many infinitesimal portions or "
elements" (Figure 1). When the object is
loaded so as to deform a given amount, each
element will suffer a predictable amount of
deformation ("strain")6 determined by its
position within the cross section. For exam-
ple, consider a tube under a bending load (
Figure 2): elements on the outside of the bend
are stretched, those on the inside are
compressed, and the material along the "
neutral axis" (located at the tube's mid-
plane) is not deformed at all. Each element is
strained by an amount proportional to its

Figure 1: Element of Cross-Section
Area

Figure 2: Relationship of Deformation
to Position in Bending (exaggerated)
distance from the neutral axis.

A torsional load creates a quite different
deformation pattern. Each element is de-
formed in shear, as adjacent segments of the
tube rotate past one another (Figure 3);
and instead of a plane, the neutral axis is a
single line along the cylindrical axis of the tube.
As with the pattern for bending, though,
the strain in each element is proportional to its
distance from the neutral axis. (In torsion
this proportionality holds true for cylindrical
tubing only.)

In either of these loading situations, each
element will resist its own deformation on the
microscopic level, and, on the large-scale level,
contribute a related amount of resistance to the
deformation of the tube as a whole. What will
be the magnitude of these resistances?

Figure 3: Shearing Deformation under
Torsional Load (exaggerated)

Moment Arm - Twice

Both the small-scale and large-scale types of
resistance are determined by the distance from
the neutral axis (in Figure 1, distance y for
bending and distance r for torsion),
through the principle of moment-arm (lever)
length, but somewhat differently on the two
different scales:

The simpler of the two - the resistance of
the element to its own deformation - is just the
characteristic stress7 that a material exerts
in proportion to the amount of strain in it.8

Since the strain is proportional to the distance
from the neutral axis, so is the stress.

In the resistance to overall deformation, the
distance of the element from the neutral

axis comes into play an additional time. The
force in each element acts to straighten (or
untwist) the tube by exerting a moment (
rather than a simple force), which tends to
rotate adjacent portions of the tube back into
their original positions. The force will be given
by the element's area multiplied by its stress.
The moment will be given by this force
multiplied by the distance from the neutral
axis.

For a given deformation and modulus of
elasticity, then, the resistance offered by
each element will depend on

• the area of the element; and
• the square of the distance from the ele-

ment to the neutral axis.
The product of these terms defines the

contribution of each element to the tube's
moment of inertia, and the sum of them (
computed as a calculus integral) is the mo-
ment of inertia itself. The value of the moment
of inertia turns out to be proportional to the
fourth power of the radius (or diameter)
for any shape that stays the same in all its
proportions while its size changes.

(Actually, it isn't necessary to perform the
calculus integration to determine this pro-
portionality. If a shape is enlarged by a factor
of k and its pattern of division into elements is
considered to grow with it - like words
printed on an expanding balloon - then:

• Each element's linear dimensions and
distance from the neutral axis will increase by
a factor of k.

• Each element's area will increase by a
factor of k2.

• Each element's contribution to the mo-
ment of inertia will increase by a factor of k4.)

In direct application, this result is only use-
ful for tubes that retain their proportions
during a change in size. But with one more step
it becomes applicable to any tube at all:

One shape for which the fourth-power re-
lationship is directly applicable is a solid cy-
lindrical rod - if it just stays round, it retains all
its proportions.

Any tube can be regarded as a large rod with
a smaller one removed from its middle. Since
all elements' contributions to the moment of
inertia are additive, the tube's moment of
inertia is the difference between that of the
large rod and that of the smaller rod.

Any tube's moment of inertia, then, is
proportional to the difference in fourth powers
of its outside and inside radii.

And Strength?

A load exceeds the strength of a tube, and
causes permanent deformation, when it be-
comes sufficient to strain some part of the
tube beyond the material's elastic range, so
that the stress exceeds the yield strength.

Initially you might think that strength
would increase in proportion to rigidity,
since rigidity is a measure of the load re-
quired to deform the object. But there's a
catch:
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Rigidity does correspond to the load re-
quired to deform the shape of the tube as a
whole. But strength depends on the maxi
mum value of strain produced somewhere
within the cross section. For flexure and tor-
sion the relation between this maximum
strain and the overall deformation will vary
when the diameter changes, because the
strain in an element is proportional to the
distance of the element from the neutral
axis.

As a result, the change of strength with
diameter suffers a "penalty," proportional to
the first power of the diameter, when
compared to the change of rigidity with
diameter. The mathematical term that pre-
dicts strength (as moment of inertia predicts
rigidity) is called the "section modulus,"9

and is equal to the moment of inertia divided
by the distance from the neutral axis to the
farthest element of the cross section. Thus,
in examples A, B, and C, strength lags be-
hind rigidity by one power of k; but in example
D, where the diameter stays the same,
strength keeps pace with rigidity.

Equipped with this knowledge, we can
compute some exact values for the examples
listed earlier. Table 1 gives values for moment
of inertia, and Table 2 for section modulus,
which would result if we started with a
straight-gauge top tube with an outside
diameter of 25.4 millimeters (1 inch) and a wall
thickness of 0.8 millimeter, and enlarged it by a
factor (k) of 1.5 . 10 (The identical bottom lines
are not a misprint, but a predictable result of
the arithmetic.)

The power-function "rules of thumb,"
then, turn out to be pretty good for tubes
with thickness/diameter ratios in this
ballpark - the worst discrepancy between the
exact value (given by the difference in fourth
powers of radii) and the rule of thumb

value is 5.4 percent in these examples. This
accuracy is actually almost as good as it is
possible to try for, since variations in manu-
facture will produce errors approaching
these: a 0.3 percent deviation from nominal
diameter - commonly encountered -will
produce a 1.2 percent variation in moment of
inertia. (The tables carry results out to
three places, but only so as to give a bit of
precision in the size of the theoretical error.
This three-place precision would be com-
pletely spurious to apply to actual pieces of
tubing unless it were based on actual mea-
surements of the specific pieces in question.)

If the diameter is doubled (conceivably for
tandem frames or recumbents) instead of
multiplied by 1.5, the error is greater, but not
twice as great - for case C with the tube
described, the error for k=2 is 9.3 percent.
The error also worsens, though, for tubes
with greater thickness/diameter ratios.

How do the rules of thumb result from the
exact definitions? The approximations can be
approached in either of two ways: mathe-
matically or diagramatically.

Mathematically, as shown in the appendix, if
the inner radius is expressed as the differ-
ence of outside radius and wall thickness, then
the difference of fourth powers can be
expressed as a series of terms. The first
term of this series is the product of the wall
thickness and the cube of the radius. When
the thickness is small enough (compared to the
radius), all the other terms become in-
significant, and this first term becomes the
rule of thumb.

The diagram approach depends on the di-
vision of the cross section into the array of
tiny elements. If the pattern of elements is
considered to keep its original arrangement
while the diameter and wall thickness are
changed in various ways, then the individual

Figure 4: Change in Area of
Cross-Section Elements
elements will get stretched and squashed in
various ways (Figure 4), and their areas will
change. The change in each element's area,
when combined with the square of the
change in its distance from the neutral axis,
will give the "rule of thumb" result.

Implications for Bicycles

When setting out to apply all this to bicy-
cles, one should first question whether rigid-
ity is always desirable. It's nice for the bot-
tom bracket to stay put and for the steering to
be definite, but it's also nice, for touring at
least, if the bike doesn't ride like a brick. To
some extent, a frame design should strive for
rigidity under lateral loads but resiliency
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under vertical ones. That's a tall order, since

the geometry of the frame tends to create
exactly the opposite combination. As a
result, most of the vertical resiliency in a
frame usually comes from the fork. Some of
it, though, may come from the main "trian-
gle," at least with certain frame shapes.

A frame's rigidity can be tailored to re-
spond differently to different loads - such as
pedaling, hard steering, and road shock - if
the designer can discover the extent to
which the deflection for each type of load de-
pends on the rigidity of specific frame tubes
(and on the shape of the frame). The de-
signer can then choose an appropriate frame
shape and set of tubes. This has long been an
art and is gradually becoming a science.
We're working on it ourselves but I won't go
into it here.

The additional variable of strength can
also be tailored, somewhat separately from
rigidity, if a design should require it. The
easiest way, of course, is to change both
strength and rigidity at once by changing
the wan thickness (as in example D), but
in an extreme case one could actually
strengthen a tube without changing the
rigidity (but with a penalty in weight), by
reducing the diameter and markedly
thickening the wall (by a factor of roughly k2,
if the diameter were divided by k).

Down Tubes and Beer Cans

Standard present-day bicycle frames do
show recognition of the effect of diameter in
one aspect: the down tube and seat tube,
which typically bear greater loads than the
top tube - torsion in the down tube, and lat-
eral bending in the seat tube - have a
diameter 121/2 percent greater than the top
tube (11/8 inch instead of 1 inch). For a given
wall thickness, this extra diameter gives the
larger tubes more than 40 percent more ri-
gidity, with only about 12½ percent more
weight.

Obviously, though, there's a limit to the
amount you can enlarge the diameter with-
out thickening the wall - especially if you
choose the even more tempting, constant -
weight course (example C) of increasing the
diameter while thinning the wall. Eventually
the wall fails by crumpling, a failure mode
called "local buckling" (also known as "the
beer-can effect").

A customary rule of thumb used by engi-
neers to avoid local buckling is that a tube's
wall thickness should be no less than 1/50 of
its diameter. Most high-quality steel
bicycle tubing turns out to be fairly close
to this
limit, at least in the midsection: for 1-inch
tubing the rule gives a minimum thickness of
0.51 millimeter and for 11/8-inch tubing, 0.57
millimeter. In lightweight steel tubing, then,
the main frame tubes, are proportioned to
have about as much strength and rigidity as
possible, and to be prudent any modification
to increase these qualities must include an
increase in thickness and therefore in
weight. A few builders consider this trade-
off

worthwhile for single-rider frames. For tan-
dems, of course, it can be emphatically
worthwhile.

Room for Growth
If the tubing is not steel but aluminum (or

titanium), the optimum diameter changes
dramatically, because for a given weight and
diameter, an aluminum tube (for instance)
has roughly three times as thick a wall as
a steel tube Zias. As Gary Klein has pointed
out,11 this means the aluminum tube can be
enlarged and thinned (as in case C) by a
factor of roughly 1.7 before it reaches the
same thickness/diameter ratio as the steel
tube of
the same weight. This enlargement will pro-
duce multiplication of approximately (by the
power-function rule of thumb) 3 in the sec-
tion modulus and 5.2 in the moments of iner-
tia. While aluminum is neither as strong nor
as stiff as steel, these increases more than
overcome the differences.

One part of a standard steel frame that
isn't close to the 1:50 ratio, and probably
could use more rigidity, is the chainstays.
These members have a wall thickness com-
parable to that of down tubes, but their maxi-
mum diameter is rarely more than 4

/5 as
great. Framebuilder Tom Kellogg points out
that torsion and bending occur in chainstays
when the bottom bracket tilts under a pedal-
ing load. He contends that chainstays should
be made in large diameters so that their addi-
tional rigidity would help hold the bottom
bracket still. I agree. (Some details that
might need watching, though, would be the
rigidity of the rear dropouts and axle and of
the chainstay-bridge attachments, so that
none of these becomes fatigued by being a
"weak link" attached to chainstays that are
more rigid than before.)

One more issue comes to mind: aerody-
namic frame tubes. For lateral rigidity, these
tubes are a disaster. When a tube is squashed
into a vertical oval, bringing all its material
closer to the vertical plane which is the
neutral axis for lateral bending, the mo-
ment of inertia about this axis takes a beat-
ing, unless the wall is thickened considera
bly. (For instance, if the wall is
thickened uniformly, it must be
thickened by the square of the ratio
between original and "squashed"
diameters. Non-uniform thickening - more
on the sides and less on the top and bottom -
can do the job with a little less weight, but
not much, and it's a considerably more
specialized job.)

An oval-tubed frame, then, will either be
heavier than a round-tubed one (if its walls
are thicker) or whippier (if it's the same
gauge). Such a frame may win a coasting
contest, but a road race may be a different
story. (Or it may not. I'm still looking for
someone who knows what frame rigidity is
worth ergonomically. Anyhow, for the sake
of science, I for one would like to see a race
include a bike built out of oval tubing
turned sideways.) We haven't gotten our
hands on an aero frame since we got our
frame-rigidity

testing machine, but when we do, we'll let
you know.

1Rigidity is the ratio between a loading force or
moment (torque) applied and the deformation
that results. Strength is the magnitude of the
greatest load that the object can bear without
suffering permanent deformation.
2Within the plane of its frame, a bicycle has a
good degree of triangulation, so that it can bear
most loads applied from within this plane -
vertical and forward or backward loads - as
axial (lengthwise) loads on the tubes, with
magnitudes and resulting deflections that are
fairly small. Against lateral forces, however, the
frame is barely braced at all, and it must resist
these forces as flexural, torsional, and shearing
loads. Shearing deflections do occur, but, like
axial ones, they are fairly small. The bending
and twisting loadings, however, create
relatively large stresses (because, unlike axial
and shear loadings, they involve rotational
deflections, and therefore allow the lengths of
the frame tubes to come into play as levers).
Consequently they cause large deflections.
Most of the deflection of a bicycle frame results
from bending and twisting of the tubes in
response to lateral forces.
3These results would apply exactly for tubing
whose inside and outside radii both changed by
the same proportion. However, all these ex-
amples except A involve changes in the
thickness/diameter ratio, and therefore violate
this requirement. There is one loophole: the
hypothetical case where the wall has no thick-
ness, so that the inside and outside radii are
equal and must therefore change at the same
rate. (The only reason these examples are even
approximately accurate, in fact, is that bicycle
tubing happens to be fairly close to this condi-
tion.)
4I've attached the mathematical expressions
involved at the end, for those who want to see
them; but this discussion can be read without
them.
5Actually a cylinder has two different moments of
inertia - one for flexure and one for torsion - but
they always change simultaneously by the same
proportion, so the magnitude of change can be
discussed for both at once. (Numerically, the
moment of inertia for torsion - called the "polar
moment of inertia" - is exactly twice the
moment of inertia for bending.)

6Strain is the ratio of elongation (or shear dis-
placement) to the original length (or, for shear, to
the width across which the shearing takes place).

7Stress is the concentration of force in an ele-
ment - the ratio between the force borne by the
element and the cross-sectional area of that el-
ement.

8The ratio between stress and strain is the
modulus of elasticity.

9The name "section modulus " is traditionally
used only for the expression that applies to
bending; but for cylindrical tubing the analo-
gous expression for torsion applies. As with "
moments," "section modulus" is related to "
modulus of elasticity" only by their shared
mathematical origin. BIKE TECH



10The lines of the tables that give actual nu- but all the other columns could be calculated
merical values for moment of inertia I and even without knowing the initial numerical
section modulus S depend on an equation value, since the coefficient        cancels out.
from the appendix:

"See Gary Klein's "A Hundred Years of Mo-
nopoly: Is Steel The Ultimate Frame Material?
", Bicycling, September/October 1981.
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